THE PHYSICS HUB

1. Basic Concepts

1.1 Displacement (\vec{S})

• Vector quantity: Change in position of an object.

$$\vec{s} = \vec{x}_f - \vec{x}_i$$

Where \vec{x}_f : Final position, \vec{x}_i : Initial position.

1.2 Distance

• Scalar quantity: Total length of the path traveled by an object.

1.3 Speed (v)

• Scalar quantity: Rate of change of distance.

$$v = \frac{\text{distance}}{\text{time}}$$

1.4 Velocity (\vec{v})

• Vector quantity: Rate of change of displacement.

$$\vec{v} = \frac{\vec{S}}{t}$$

• Instantaneous velocity:

$$\vec{v} = \frac{d\vec{x}}{dt}$$

1.5 Acceleration (\vec{a})

• Vector quantity: Rate of change of velocity.

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$

2. Equations of Motion (Constant Acceleration)

For an object moving with uniform acceleration (a):

2.1 First Equation of Motion

$$v = u + at$$

Where u: Initial velocity, v: Final velocity, t: Time.

2.2 Second Equation of Motion

$$s = ut + \frac{1}{2}at^2$$

Where *s*: Displacement.

2.3 Third Equation of Motion

$$v^2 = u^2 + 2as$$

2.4 Displacement in *n*-th Second

$$s_n = u + \frac{a}{2}(2n - 1)$$

3. Graphical Representations

3.1 Displacement-Time Graph

• Slope of *x-t* graph: Instantaneous velocity.

3.2 Velocity-Time Graph

1. Slope of *v-t* graph: Acceleration.

2. Area under *v-t* graph: Displacement.

3.3 Acceleration-Time Graph

• Area under *a-t* graph: Change in velocity.

4. Free Fall (Vertical Motion Under Gravity)

4.1 Acceleration Due to Gravity

• Denoted by g, directed downward. Value: $g \approx 9.8 \text{ m/s}^2$.

4.2 Equations of Motion for Free Fall

1. Velocity:

$$v = u + gt$$

2. Displacement:

$$h = ut + \frac{1}{2}gt^2$$

3. Velocity-Displacement Relation:

$$v^2 = u^2 + 2gh$$

4.3 Time of Flight (for objects thrown vertically)

1. Time to reach maximum height:

$$t_{\rm up} = \frac{u}{g}$$

2. Total time of flight:

THE PHYSICS HUB

$$T = \frac{2u}{g}$$

4.4 Maximum Height

• Maximum height reached by an object:

$$H = \frac{u^2}{2g}$$

5. Relative Motion in 1D

5.1 Relative Velocity

• Relative velocity of object A with respect to object B:

$$\vec{v}_{AB} = \vec{v}_A - \vec{v}_B$$

6. Key Results and Special Cases

6.1 Motion of Two Objects Meeting

• If two objects start at x_1 and x_2 with velocities v_1 and v_2 , and accelerations a_1 and a_2 , they meet when:

$$x_1 + v_1 t + \frac{1}{2} a_1 t^2 = x_2 + v_2 t + \frac{1}{2} a_2 t^2$$

6.2 Uniform Motion (Zero Acceleration)

1. Velocity is constant:

$$v = \frac{s}{t}$$

2. Displacement:

$$s = vt$$

THE PHYSICS HUE

6.3 Relative Acceleration

• Relative acceleration of object A with respect to object B:

$$\vec{a}_{AB} = \vec{a}_A - \vec{a}_B$$